
Felix's Node.js Style Guide
Tabs vs Spaces
Semicolons
Editors
Trailing whitespace
Line length
Quotes
Braces
Variable declarations
Variable and property names
Class names
Constants
Object / Array creation
Equality operator
Extending prototypes
Conditions
Function length
Return statements
Named closures
Nested Closures
Callbacks
Object.freeze, Object.preventExtensions, Object.seal, with, eval
Getters and setters
EventEmitters
Inheritance / Object oriented programming

There is no official document that governs the style of node.js
applications. This guide is my opinionated attempt to bring you a
good set of instructions that will allow you to create beautiful and
consistent software.

This guide assumes that you are only targeting node.js. If your code
also needs to run in the browser or other environments, please
ignore some of it.

http://nodeguide.com/style.html#tabs-vs-spaces
http://nodeguide.com/style.html#semicolons
http://nodeguide.com/style.html#editors
http://nodeguide.com/style.html#trailing-whitespace
http://nodeguide.com/style.html#line-length
http://nodeguide.com/style.html#quotes
http://nodeguide.com/style.html#braces
http://nodeguide.com/style.html#variable-declarations
http://nodeguide.com/style.html#variable-and-property-names
http://nodeguide.com/style.html#class-names
http://nodeguide.com/style.html#constants
http://nodeguide.com/style.html#object-array-creation
http://nodeguide.com/style.html#equality-operator
http://nodeguide.com/style.html#extending-prototypes
http://nodeguide.com/style.html#conditions
http://nodeguide.com/style.html#function-length
http://nodeguide.com/style.html#return-statements
http://nodeguide.com/style.html#named-closures
http://nodeguide.com/style.html#nested-closures
http://nodeguide.com/style.html#callbacks
http://nodeguide.com/style.html#object.freeze-object.preventextensions-object.seal-with-eval
http://nodeguide.com/style.html#getters-and-setters
http://nodeguide.com/style.html#eventemitters
http://nodeguide.com/style.html#inheritance-object-oriented-programming

Please also note that node.js, as well as various packages for it, have
their own slightly different styles. So if you're interested in
contributing to those, play by their rules.

Tabs vs Spaces
Let's start with the religious problems first. Our benevolent dictator
has chosen 2 space indention for the node core, so you would do well
to follow his choice.

Semicolons
There are rebellious forces that try to steal your semicolons from
you. But make no mistake, our traditional culture is still well and
truly alive. So follow the community, and use those semicolons!

Editors
You can use any editor. However, having support for JS syntax
highlighting and executing the currently open file with node.js will
come in very handy. While vim may not help you to impress the
ladies, it will please our BDFL and your grandpa will also approve.

I'm typing this document in Notes on my iPad, but that's because I'm
on a beach in Thailand. It's likely that your own work environment
will impact your choice of editor as well.

Trailing whitespace
Just like you brush your teeth after every meal, you clean up any
trailing whitespace in your JavaScript files before committing.
Otherwise the rotten smell of careless neglect will eventually drive
away contributors and/or co-workers.

Line length
Limit your lines to 80 characters. Yes, screens have gotten much
bigger over the last few years, but your brain hasn't. Use the
additional room for split screen, your editor supports that, right?

http://nodeguide.com/style.html#TOC
http://nodeguide.com/community.html#ryan-dahl
http://nodeguide.com/style.html#TOC
http://nodeguide.com/community.html#isaac-schlueter
http://news.ycombinator.com/item?id=1547647
http://nodeguide.com/style.html#TOC
http://www.vim.org/
http://en.wikipedia.org/wiki/BDFL
http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC

Quotes
Use single quotes, unless you are writing JSON.

Right:

var foo = 'bar';

Wrong:

var foo = "bar";

Braces
Your opening braces go on the same line as the statement.

Right:

if (true) {
 console.log('winning');
}

Wrong:

if (true)
{
 console.log('losing');
}

Also, notice the use of whitespace before and after the condition
statement.

Variable declarations
Declare one variable per var statement, it makes it easier to re-order
the lines. Ignore Crockford on this, and put those declarations
wherever they make sense.

http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC
http://javascript.crockford.com/code.html

Right:

var keys = ['foo', 'bar'];
var values = [23, 42];

var object = {};
while (items.length) {
 var key = keys.pop();
 object[key] = values.pop();
}

Wrong:

var keys = ['foo', 'bar'],
 values = [23, 42],
 object = {},
 key;

while (items.length) {
 key = keys.pop();
 object[key] = values.pop();
}

Variable and property names
Variables and properties should use lower camel case capitalization.
They should also be descriptive. Single character variables and
uncommon abbreviations should generally be avoided.

Right:

var adminUser = db.query('SELECT * FROM users ...');

Wrong:

var admin_user = d.query('SELECT * FROM users ...');

Class names

http://nodeguide.com/style.html#TOC
http://en.wikipedia.org/wiki/camelCase#Variations_and_synonyms
http://nodeguide.com/style.html#TOC

Class names should be capitalized using upper camel case.

Right:

function BankAccount() {
}

Wrong:

function bank_Account() {
}

Constants
Constants should be declared as regular variables or static class
properties, using all uppercase letters.

Node.js / V8 actually supports mozilla's const extension, but
unfortunately that cannot be applied to class members, nor is it part
of any ECMA standard.

Right:

var SECOND = 1 * 1000;

function File() {
}
File.FULL_PERMISSIONS = 0777;

Wrong:

const SECOND = 1 * 1000;

function File() {
}
File.fullPermissions = 0777;

Object / Array creation

http://en.wikipedia.org/wiki/camelCase#Variations_and_synonyms
http://nodeguide.com/style.html#TOC
https://developer.mozilla.org/en/JavaScript/Reference/Statements/const
http://nodeguide.com/style.html#TOC

Use trailing commas and put short declarations on a single line.
Only quote keys when your interpreter complains:

Right:

var a = ['hello', 'world'];
var b = {
 good: 'code',
 'is generally': 'pretty',
};

Wrong:

var a = [
 'hello', 'world'
];
var b = {"good": 'code'
 , is generally: 'pretty'
 };

Equality operator
Programming is not about remembering stupid rules. Use the triple
equality operator as it will work just as expected.

Right:

var a = 0;
if (a === '') {
 console.log('winning');
}

Wrong:

var a = 0;
if (a == '') {
 console.log('losing');
}

Extending prototypes

http://nodeguide.com/style.html#TOC
https://developer.mozilla.org/en/JavaScript/Reference/Operators/Comparison_Operators
http://nodeguide.com/style.html#TOC

Do not extend the prototypes of any objects, especially native ones.
There is a special place in hell waiting for you if you don't obey this
rule.

Right:

var a = [];
if (!a.length) {
 console.log('winning');
}

Wrong:

Array.prototype.empty = function() {
 return !this.length;
}

var a = [];
if (a.empty()) {
 console.log('losing');
}

Conditions
Any non-trivial conditions should be assigned to a descriptive
variable:

Right:

var isAuthorized = (user.isAdmin() || user.isModerator());
if (isAuthorized) {
 console.log('winning');
}

Wrong:

if (user.isAdmin() || user.isModerator()) {
 console.log('losing');
}

http://nodeguide.com/style.html#TOC

Function length
Keep your functions short. A good function fits on a slide that the
people in the last row of a big room can comfortably read. So don't
count on them having perfect vision and limit yourself to ~10 lines of
code per function.

Return statements
To avoid deep nesting of if-statements, always return a functions
value as early as possible.

Right:

function isPercentage(val) {
 if (val < 0) {
 return false;
 }

 if (val > 100) {
 return false;
 }

 return true;
}

Wrong:

function isPercentage(val) {
 if (val >= 0) {
 if (val < 100) {
 return true;
 } else {
 return false;
 }
 } else {
 return false;
 }
}

Or for this particular example it may also be fine to shorten things
even further:

http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC

function isPercentage(val) {
 var isInRange = (val >= 0 && val <= 100);
 return isInRange;
}

Named closures
Feel free to give your closures a name. It shows that you care about
them, and will produce better stack traces:

Right:

req.on('end', function onEnd() {
 console.log('winning');
});

Wrong:

req.on('end', function() {
 console.log('losing');
});

Nested Closures
Use closures, but don't nest them. Otherwise your code will become
a mess.

Right:

setTimeout(function() {
 client.connect(afterConnect);
}, 1000);

function afterConnect() {
 console.log('winning');
}

Wrong:

http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC

setTimeout(function() {
 client.connect(function() {
 console.log('losing');
 });
}, 1000);

Callbacks
Since node is all about non-blocking I/O, functions generally return
their results using callbacks. The convention used by the node core is
to reserve the first parameter of any callback for an optional error
object.

You should use the same approach for your own callbacks.

Object.freeze, Object.preventExtensions,
Object.seal, with, eval
Crazy shit that you will probably never need. Stay away from it.

Getters and setters
Do not use setters, they cause more problems for people who try to
use your software than they can solve.

Feel free to use getters that are free from side effects, like providing a
length property for a collection class.

EventEmitters
Node.js ships with a simple EventEmitter class that can be included
from the 'events' module:

var EventEmitter = require('events').EventEmitter;

When creating complex classes, it is common to inherit from this
EventEmitter class to emit events. This is basically a simple
implementation of the Observer pattern.

http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC
http://nodeguide.com/style.html#TOC
http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://nodeguide.com/style.html#TOC
http://en.wikipedia.org/wiki/Observer_pattern

However, I strongly recommend that you never listen to the events
of your own class from within it. It isn't natural for an object to
observe itself. It often leads to undesirable exposure to
implementation details, and makes your code more difficult to
follow.

Inheritance / Object oriented programming
Inheritance and object oriented programming are subjects by
themselves. If you're interested in following this popular
programming model, please read my Object oriented programming
guide.

http://nodeguide.com/style.html#TOC
http://nodeguide.com/object_oriented_programming.html

